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(Scheme 1) as air-stable compleXdeliminary X-ray crystal-
lographic dat® confirm the mononuclear, pseudo-octahedral
nature of complexe$ and2, both of which contain a fully planar,
chelatingpyvd ligand as depicted in Scheme 1. The bVis
spectra (Figure 1) indicate that these are appropriately described

The design and synthesis of molecular-based magnetic materialts Pyvde)M(Il) complexes. The spectrum of the free radical

is a major focus of molecular materials resedr€me of the more

contains two peaks at 409 nm€ 2 x 10° L-mol~*-cm™) and

promising strategies relies on direct exchange coupling between450 nm ¢ = 0.8 x 10°). The spectra ofl and 2 are slightly
metal ions and coordinated open shell (i.e., radical-based) ligandsred-shifted {max = 425, 510 nm forl and 425, 513 nm foR)
in clusters or coordination polymers. Among the most heavily and more intensely absorbingufs = 3.8 x 1% (1), 3.4 x 1¢°
studied paramagnetic ligands in this context are nitroxide radicals (2)) relative to freepyvd; the intensity of these electronic

(including nitronyl nitroxides and imino nitroxide3)nd radical
anions such as semiquinofesnd TCNE and TCNQ radical
anions. The nitrogen-rich framework of the stable verdazaglical

transitions completely mask any—d transitions. Alternative
formulations, for examplepfyvd~)M(lIl), can be ruled out also
because the potentials at which Ni(ll) complexes are oxidized to

represents an attractive alternative ligand system. However, thereNi(lll) (generally >+1.0V vs SCE)! are incompatible with the

are currently very few examples of metalerdazyl complexes,
and all of these complexes are basedd@magnetianetal ions
such as Cu(l) or group 12 M(Il) ion'sThe absence of metal-

reduction potential opyvd (—1.25V vs SCE}.

The temperature dependence of the magnetic susceptibility of
1 and2 (Figure 2) shows important differences in the magnetic

based free electrons in these systems precludes the possibility ohehavior of these complexéThe room-temperature value of
verdazyl-metal magnetic exchange interactions. We describe, T for Mn complex1 is 3.84 emeK-mol-?, less than expected
herein the preparation of the first verdazyl radical complexes of for two noninteracting $ = Y, S = %) spin systemsyT
open shell ions, namely Ni(ll) and Mn(ll), and demonstrate that gradually decreases with temperature down to about 50 K, where
the verdazyl-metal coupling is strong and ferromagnetic in the it |evels off and then decreases more sharplyTadecreases

case of Ni(ll). These results highlight the potential of creating

further. These data are consistent with a model in which the

new magnetic materials based on coordinated verdazyl radicalsverdazy| and manganese spins are antiferromagnetically coupled,

and paramagnetic transition metal ions.
Reactions of 1,5-dimethyl-3-(2-pyridyl)-6-oxoverdazyyyd)>®
with M(hfac)-2H,0O affordedl (M = Ni) and 2 (M = Mn)
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with the following parametersg = 1.987,0 = —0.8 K, Jag =
—45 Cm_1.13

In contrast tol, the room-temperature value @ff for Ni
complex2is 2.0 (which corresponds closely to the expected value
for an S = %/, system) and does not vary significantly with
temperature above 80 K. The magnetic behavid isfconsistent
with that of a ferromagnetically couple®, = Y¥,, § =1 pair
with the following parametersg = 2.1,60 = —2.0 K, Jag = +240
cm 1% Further support for ferromagnetic coupling @ is
provided by low temperature (3 K) magnetization studies:
although2 does not saturate at 5 T, its magnetization at this field

(9) Synthesis ofl: A heptane solution (60 mL) of Ni(hfagRH,O (600
mg, 1.18 mmol) and a C{€I, solution (15 mL)ofpyvd (240 mg, 1.18 mmol)
were combined and stirred for 1 h. After solvent removal, the residue was
recrystallized from hexanes to yield(463 mg, 58%). Anal. Calcd (found)
for C1oH1:NsOsF1Ni: C, 33.71 (33.78); H, 1.79 (1.87); N, 10.34 (10.19) %.
MS (El) = m/z 676 (M, 100%). Compoun@ was prepared in an analogous
fashion from Mn(hfacy2H,0, yield 88%. Anal. Calcd (found) for gH;>-
NsOsFi1oMn: C, 33.90 (34.14); H, 1.80 (1.87); N, 10.40 (10.83) %. MS (El)
= m/z 673 (M", 100%).

(10) Barclay, T. M. Unpublished results.

(11) Nag, K.; Chakavorty, ACoord. Chem. Re 1980 33, 87.

(12) Variable temperature magnetic data-80 K) were obtained with a
Quantum Design MPMS5S Squid magnetometer operating atQ5LT.
Calibrations were carried out with a palladium standard cylinder, and
temperature errors were determined with TMIEN][CuCl,] (Brown, D. S.;
Crawford, V. H.; Hall, J. W.; Hatfield, W. EJ. Phys. Cheml977, 81, 1303.

(13)H = —JSySier, Where M= Mn (1) or Ni (2). 1’R= 1.1 (1) and 0.8
(2), whereR = [Z(yobs — Yca)¥=(xop9d?] Y2 The drop iny T at low temperatures
for both 1 and 2 was modeled by incorporating a Weiss constant into the
respective equations. The low-temperature behaviour could also arise from
zero-field splitting, although the choice of model for the low-temperature
behaviour has no effect on the high-temperature magnetic data fit.

10.1021/ja001627k CCC: $19.00 © 2000 American Chemical Society
Published on Web 08/08/2000



8078 J. Am. Chem. Soc., Vol. 122, No. 33, 2000 Communications to the Editor

Intramolecular spin coupling in metal-nitroxide and nitronyl
nitroxide complexes is usually antiferromagnetic because the
nitroxide magnetic orbital is not orthogonal to the metal d
orbitals?2® In rare cases the nitroxidanetal binding geometry
enforces magnetic orbital orthogonality, thereby producing weak
ferromagnetic couplinéf The strong ferromagnetic radieaNi(ll)
exchange coupling i is striking; only one other metalkradical
complex with comparable intramolecular ferromagnetic coupling
is known, a semiquinoneNi(ll) complex!” In both of these
systems the orthogonality of magnetic orbitals favors ferromag-
netic coupling, while the strength of the coupling (i.e., ladye
] arises from a coordinate bond in which both atoms bear large

400 500 600 spin densitied?1°In comparison, the radicahickel coupling in
A, (NM) imino nitroxide complex3?° is ferromagnetic but considerably
. . . weaker § = +95 cn1?) than that found ir2 because the imine
Figure 1. UV—vis spectra opyvd (), 1 (), and2 (- - -) in CHLCz nitrogenocoordinated )to the metal has a relatively small spin
density associated with it.
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We have prepared the first verdazyl complexes of paramagnetic
metal ions and found that thpyvd radical is capable of engaging
1.0 T

; %0 20 300 in strong intra_molecular exchange interag:tions vv_ith metal-based
T spins. I_Exceptlonally strong ferror_nagnetlc coupling produces a
) o high spin 8= 3/,) molecule in the nickel compleX These results
Figure 2. yTvs T for 1 (A) and2 (0). The solid lines correspond o highlight the great potential for the synthesis of new strongly
data fits using the data described in the text. magnetically coupled systems based on verdamgtal arrays.

(2.3 NB) corresponds to a value larger than expected foB an As an additional advantage, the design of new chelating verdazyls
1 system but smaller than expected for@ ¥, species. The can be undertaken based on their structural similarities to
deviation from the expecte = 3, value is ascribed to oligopyridines and related nitrogen-based heterocyclic ligands.
intermolecular antiferromagnetic interactions which predominate For example, the recently reported pyrimidine-substituted verdazyl

at 3 K (as is evident from theT vs T data)3 pmvd?® is a close structural mimic of 2:bipyrimidine and as
The varying verdazyl-radical exchange couplinglirand 2 such is ideally suited for the assembly of binuclear or linear chain
can be explained by orbital symmetry arguméffBhe verdazyl ~ complexes. Efforts to this end are in progress.
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